Insulin-like growth factor-I receptor expression regulates neuroblastoma metastasis to bone.
نویسندگان
چکیده
Neuroblastoma is a pediatric tumor that preferentially metastasizes to bone. Patients with bone metastases have a mortality rate >93%, indicating a need for novel treatment targets. Our laboratory has shown that type I insulin-like growth factor receptor (IGF-IR) expression and activation regulate neuroblastoma cell proliferation, motility, invasion, and survival, and that expression of the IGF-IR correlates with neuroblastoma tumorigenicity. Bone expresses large amounts of IGF ligands, and the IGF system is required for normal bone physiology. The current study addresses the role of the IGF system in neuroblastoma metastasis to bone. Upon reaching the bone marrow through the circulation, neuroblastoma cells must dock at the bone marrow endothelium, extravasate into the bone microenvironment, and destroy bone tissue to allow for tumor growth. This report examines the effects of high IGF-IR expression on neuroblastoma cell interaction with bone. The current data show that neuroblastoma cells with high IGF-IR expression, either endogenously or through transfection, adhere to human bone marrow endothelial cells and subsequently migrate toward both IGF-I and human bone stromal cells. High IGF-IR-expressing neuroblastoma cells adhere tightly to bone stromal cells, flatten, and extend processes. When neuroblastoma cells are injected directly into the tibiae of mice, those cells with increased IGF-IR form both osteolytic lesions within the tibiae and secondary tumors within other sites. These results support the hypothesis that IGF-IR expression in neuroblastoma cells increases tumor cell interaction with the bone microenvironment, resulting in greater formation of metastases.
منابع مشابه
ANTISENSE RNA TO THE TYPE I INSULIN-LIKE GROWTH FACTOR RECEPTOR REVERSED THE TRANSFORMED PHENOTYPE OF PC-3 HUMAN PROSTATE CANCER CELL LINE IN VITRO
The insulin-like growth factor I receptor (IGF-IR) plays an essential role in the establishment and maintenance of transformed phenotype. Interference with the IGF-IR pathway by antisense causes reversal of the transformed phenotype in many rodent and human tumor cell lines. We stably transfected the PC-3 human prostate cancer cell line with an IGF-IR antisense RNA expression plasmid. The ...
متن کاملInvestigation on the Levels of IGF-I Receptor and IGF-I Binding Protein I in the Brain of Insulin Resistant Rats
Abstract Introduction: There is limited knowledge available on the metabolism of glucose in the brain, an insulin insensitive organ. Insulin receptors hybridize with insulin like growth factor receptor (IGF-I) to transduce the signals in different areas of the brain. In this article we aimed at investigating whether the expression of IGF-I receptor and IGF-I binding proteins (IGFBP1) is change...
متن کاملEffects of Inflammatory Cytokine Tumor Necrosis Factor-α on Human Mesenchymal Stem Cell Gene Expression: A Mechanism for Liver Regeneration
Introduction Insulin-like growth factor I (IGF-I) which is produced in abundance in the normal adult liver, is deeply involved in hepatocyte survival, growth, and differentiation during liver development. IGF-I plays the roles via the receptor (IGF-IR) signaling pathway. IGF-IR unlike IGF-I is expressed strongly in the developing liver, but much more weakly in adults. Objective: We hypothesi...
متن کاملIGF receptor function and regulation in autocrine human neuroblastoma cell growth.
Insulin-like growth factor-II (IGF-II) and its receptors (type I and II IGF receptors) are expressed in the nervous system in a tissue and developmentally specific manner. We have previously shown that SH-SY5Y human neuroblastoma cells synthesize and secrete high levels of IGF-II, and respond to it with increased neuritic outgrowth, DNA synthesis, and cell proliferation. SH-SY5Y cells also prod...
متن کاملGenome-wide analysis of the homeobox C6 transcriptional network in prostate cancer.
Homeobox transcription factors are developmentally regulated genes that play crucial roles in tissue patterning. Homeobox C6 (HOXC6) is overexpressed in prostate cancers and correlated with cancer progression, but the downstream targets of HOXC6 are largely unknown. We have performed genome-wide localization analysis to identify promoters bound by HOXC6 in prostate cancer cells. This analysis i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cancer research
دوره 66 13 شماره
صفحات -
تاریخ انتشار 2006